Trauma Monthly

Published by: Kowsar

Synthesis of Nanocrystalline Hydroxyapatite Using Eggshell and Trimethyl Phosphate

Behnam Hosseini 1 , 2 , * , Seyed Mehdi Mirhadi 2 , Mehdi Mehrazin 2 , Mohsen Yazdanian 3 and Mahmood Reza Kalantar Motamedi 4 , *
Authors Information
1 Young Researchers and Elite Club, Shahreza Branch, Islamic Azad University, Isfahan, IR Iran
2 Department of Materials Engineering, Shahreza Branch, Islamic Azad University, Isfahan, IR Iran
3 Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
4 Department of Endodontics, School of Dentistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, IR Iran
Corresponding Authors:
Article information
  • Trauma Monthly: September 2017, 22 (5); e36139
  • Published Online: August 27, 2016
  • Article Type: Research Article
  • Received: January 7, 2016
  • Revised: May 13, 2016
  • Accepted: June 25, 2016
  • DOI: 10.5812/traumamon.36139

To Cite: Hosseini B, Mirhadi S M, Mehrazin M, Yazdanian M, Kalantar Motamedi M R. Synthesis of Nanocrystalline Hydroxyapatite Using Eggshell and Trimethyl Phosphate, Trauma Mon. 2017 ; 22(5):e36139. doi: 10.5812/traumamon.36139.

Abstract
Copyright © 2016, Trauma Monthly. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Footnote
References
  • 1. Goldberg VM. Natural history of autografts and allografts. 1992;
  • 2. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976). 1995; 20(9): 1055-60[PubMed]
  • 3. Clavero J, Lundgren S. Ramus or chin grafts for maxillary sinus inlay and local onlay augmentation: comparison of donor site morbidity and complications. Clin Implant Dent Relat Res. 2003; 5(3): 154-60[PubMed]
  • 4. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater. 1991; 2(3): 187-208[DOI][PubMed]
  • 5. Boyce T, Edwards J, Scarborough N. Allograft bone: the influence of processing on safety and performance. Orthopedic Clin North Am. 1999; 30(4): 571-81
  • 6. Simonds RJ, Holmberg SD, Hurwitz RL, Coleman TR, Bottenfield S, Conley LJ, et al. Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med. 1992; 326(11): 726-32[DOI][PubMed]
  • 7. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN, et al. Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am. 2001; 83-A Suppl 2 Pt 2: 98-103[PubMed]
  • 8. Hench LL. Bioceramics: from concept to clinic. J Am Ceramic Socio. 1991; 74(7): 1487-510
  • 9. Karamian E, Khandan A, Kalantar Motamedi MR, Mirmohammadi H. Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants. BioMed Res Int. 2014; 2014
  • 10. Karamian E, KalantarMotamedi MR, Khandan A, Soltani P, Maghsoudi S. An in vitro evaluation of novel NHA/zircon plasma coating on 316L stainless steel dental implant. Progress Nat Sci Materials Int. 2014; 24(2): 150-6
  • 11. Ong JL, Chan DC. Hydroxyapatite and their use as coatings in dental implants: a review. Crit Rev Biomed Eng. 2000; 28(5-6): 667-707[PubMed]
  • 12. Holmes RE. Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg. 1979; 63(5): 626-33[PubMed]
  • 13. Kattimani VS, Chakravarthi PS, Kanumuru NR, Subbarao VV, Sidharthan A, Kumar TS, et al. Eggshell derived hydroxyapatite as bone graft substitute in the healing of maxillary cystic bone defects: a preliminary report. J Int Oral Health. 2014; 6(3): 15-9[PubMed]
  • 14. Lee JJ, Rouhfar L, Beirne OR. Survival of hydroxyapatite-coated implants: a meta-analytic review. J Oral Maxillofac Surg. 2000; 58(12): 1372-80[DOI][PubMed]
  • 15. Ghanaati S, Barbeck M, Willershausen I, Thimm B, Stuebinger S, Korzinskas T, et al. Nanocrystalline hydroxyapatite bone substitute leads to sufficient bone tissue formation already after 3 months: histological and histomorphometrical analysis 3 and 6 months following human sinus cavity augmentation. Clin Implant Dent Relat Res. 2013; 15(6): 883-92[DOI][PubMed]
  • 16. Gholami GA, Najafi B, Mashhadiabbas F, Goetz W, Najafi S. Clinical, histologic and histomorphometric evaluation of socket preservation using a synthetic nanocrystalline hydroxyapatite in comparison with a bovine xenograft: a randomized clinical trial. Clin Oral Implants Res. 2012; 23(10): 1198-204[DOI][PubMed]
  • 17. Joschek S, Nies B, Krotz R, Goferich A. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone. Biomaterials. 2000; 21(16): 1645-58[PubMed]
  • 18. Karamian EM, Mirmohamadi H. , Soltani P. , Khandan A. . Correlation between crystallographic parameters and biodegradation rate of natural hydroxyapatite in physiological solutions. Indian J Sci Res. 2014; 4(3): 92-9
  • 19. Ozawa M, Suzuki S. Microstructural development of natural hydroxyapatite originated from fish‐bone waste through heat treatment. J Am Ceramic Soc. 2002; 85(5): 1315-7
  • 20. Xu Y, Wang D, Yang L, Tang H. Hydrothermal conversion of coral into hydroxyapatite. Materials Characteriz. 2001; 47(2): 83-7
  • 21. Ozyegin LS, Oktar FN, Goller G, Kayali ES, Yazici T. Plasma-sprayed bovine hydroxyapatite coatings. Materials Letters. 2004; 58(21): 2605-9
  • 22. Dupoirieux L, Pourquier D, Souyris F. Powdered eggshell: a pilot study on a new bone substitute for use in maxillofacial surgery. J Craniomaxillofac Surg. 1995; 23(3): 187-94[PubMed]
  • 23. Louis M, Morse DL, Potter ME, DeMelfi TM, Guzewich JJ, Tauxe RV, et al. The emergence of grade A eggs as a major source of Salmonella enteritidis infections: new implications for the control of salmonellosis. J Am A. 1988; 259(14): 2103-7
  • 24. Lee SJ, Oh SH. Fabrication of calcium phosphate bioceramics by using eggshell and phosphoric acid. Materials Letters. 2003; 57(29): 4570-4
  • 25. Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, et al. Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A. 2008; 87(1): 203-14[DOI][PubMed]
  • 26. Siva Rama Krishna D, Siddharthan A, Seshadri SK, Sampath Kumar TS. A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste. J Mater Sci Mater Med. 2007; 18(9): 1735-43[DOI][PubMed]
  • 27. Goller G, Oktar FN, Ozyegin LS, Kayali ES, Demirkesen E. Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable. Materials Letters. 2004; 58(21): 2599-604
  • 28. White E, Shors EC. Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent Clin North Am. 1986; 30(1): 49-67[PubMed]
  • 29. Chaudhuri B, Mondal B, Modak DK, Pramanik K, Chaudhuri BK. Preparation and characterization of nanocrystalline hydroxyapatite from egg shell and K 2 HPO 4 solution. Materials Letters. 2013; 97: 148-50
  • 30. Rivera EM, Araiza M, Brostow W, Castano VM, Dıaz-Estrada JR, Hernandez R, et al. Synthesis of hydroxyapatite from eggshells. Materials Letters. 1999; 41(3): 128-34
  • 31. Monmaturapoj N, Yatongchai C. Influence of preparation method on hydroxyapatite porous scaffolds. Bulletin Materials Sci. 2011; 34(7): 1733-7
  • 32. Beganskiene A, Bogdanoviciene I, Kareiva A. Calcium acetylacetonate–a novel calcium precursor for sol-gel preparation of Ca. Chemija. 2006; 17(2-3): 16-20
  • 33. Corbridge DEC. Phosphorus: chemistry, biochemistry and technology. 2013;
  • 34. Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1918; 2: 98-100
  • 35. Sooksaen P, Jumpanoi N, Suttiphan P, Kimchaiyong E. Crystallization of nano-sized hydroxyapatite via wet chemical process under strong alkaline conditions. Sci J UBU. 2010; 1: 20-7
  • 36. Han Y, Xu K, Montay G, Fu T, Lu J. Evaluation of nanostructured carbonated hydroxyapatite coatings formed by a hybrid process of plasma spraying and hydrothermal synthesis. J Biomed Mater Res. 2002; 60(4): 511-6[PubMed]
  • 37. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001; 22(11): 1327-33[PubMed]
  • 38. Sanosh KP, Chu M, Balakrishnan A, Kim TN, Cho SJ. Preparation and characterization of nano-hydroxyapatite powder using sol-gel technique. Bull Materials Sci. 2009; 32(5): 465-70
  • 39. Bone graft substitutes: facts, fictions & applications.
  • 40. Kinaci A, Neuhaus V, Ring DC. Trends in bone graft use in the United States. Orthopedics. 2014; 37(9): 783-8[DOI][PubMed]
  • 41. Rapid Growth in Asia’s Egg Output; 2015. 2015;
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments