Trauma Monthly

Published by: Kowsar

Role of Coral, Demineralized Calf Fetal Growth Plate, and a Combination of the Two in Healing of Bone Defects in Rabbits

Amin Bigham-Sadegh 1 , * , Ahmad-Reza Mohamadnia 2 , Homayon-Reza Shahbazkia 3 and Shima Khalilifard 4
Authors Information
1 Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shahrekord University, Shahrekord, IR Iran
2 Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, IR Iran
3 Department of Basic Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, IR Iran
4 School of Veterinary Medicine, Shahrekord University, Shahrekord, IR Iran
Article information
  • Trauma Monthly: March 2017, 22 (2); e28275
  • Published Online: August 20, 2016
  • Article Type: Research Article
  • Received: February 28, 2015
  • Revised: October 3, 2015
  • Accepted: December 16, 2015
  • DOI: 10.5812/traumamon.28275

To Cite: Bigham-Sadegh A, Mohamadnia A, Shahbazkia H, Khalilifard S. Role of Coral, Demineralized Calf Fetal Growth Plate, and a Combination of the Two in Healing of Bone Defects in Rabbits, Trauma Mon. 2017 ; 22(2):e28275. doi: 10.5812/traumamon.28275.

Copyright © 2016, Trauma Monthly. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004; 32(3): 477-86[PubMed]
  • 2. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004; 86-A(7): 1541-58[PubMed]
  • 3. Wang Y, Cui FZ, Hu K, Zhu XD, Fan DD. Bone regeneration by using scaffold based on mineralized recombinant collagen. J Biomed Mater Res B Appl Biomater. 2008; 86(1): 29-35[DOI][PubMed]
  • 4. Bigham-Sadegh A, Karimi I, Alebouye M, Shafie-Sarvestani Z, Oryan A. Evaluation of bone healing in canine tibial defects filled with cortical autograft, commercial-DBM, calf fetal DBM, omentum and omentum-calf fetal DBM. J Vet Sci. 2013; 14(3): 337-43[PubMed]
  • 5. Du C, Cui FZ, Feng QL, Zhu XD, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res. 1998; 42(4): 540-8[PubMed]
  • 6. Li J, Lin Z, Zheng Q, Guo X, Lan S, Liu S, et al. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen. Mater Sci Eng, Proc Conf. 2010; 30(8): 1272-9[DOI]
  • 7. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005; 2(1): 87-101[DOI][PubMed]
  • 8. McAuliffe JA. Bone graft substitutes. Journal of Hand Therapy. 2003; 16(2): 180-7
  • 9. Wozney JM, Seeherman HJ. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol. 2004; 15(5): 392-8[DOI][PubMed]
  • 10. Bigham AS, Shadkhast M, Dehghani SN. Autogenous bone marrow concurrent with static magnetic field effects on bone-defect healing: radiological and histological study. Comp Clin Pathol. 2008; 18(2): 163-8[DOI]
  • 11. Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med. 2012; 23(2): 473-83[DOI][PubMed]
  • 12. Oryan A, Meimandi Parizi A, Shafiei-Sarvestani Z, Bigham AS. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank. 2012; 13(4): 639-51[DOI][PubMed]
  • 13. Bouchon C, Lebrun T, Rouvillain JL, Roudier M. The Caribbean Scleractinian corals used for surgical implants. Bull Inst océanogr. 1995; : 111-22
  • 14. Kavousi J, Seyfabadi J, Rezai H, Fenner D. Coral reefs and communities of Qeshm Island, the Persian Gulf. Zool Stud. 2011; 50(3): 276-83
  • 15. Ghavam Mostafavi P, Fatemi SMR, Shahhosseiny MH, Hoegh-Guldberg O, Loh WKW. Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran). Marine Bio. 2007; 153(1): 25-34[DOI]
  • 16. Guillemin G, Patat JL, Fournie J, Chetail M. The use of coral as a bone graft substitute. J Biomed Mater Res. 1987; 21(5): 557-67[DOI][PubMed]
  • 17. Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L. Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res. 1989; 23(7): 765-79[DOI][PubMed]
  • 18. Bigham-Sadegh A, Karimi I, Shadkhast M, Mahdavi MH. Hydroxyapatite and demineralized calf fetal growth plate effects on bone healing in rabbit model. J Orthop Traumatol. 2015; 16(2): 141-9[DOI][PubMed]
  • 19. Bolander ME, Balian G. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts. J Bone Joint Surg Am. 1986; 68(8): 1264-74[PubMed]
  • 20. Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res. 2015; 56(3): 175-94[DOI][PubMed]
  • 21. Bigham AS, Shadkhast M, Bigham Sadegh A, Shafiei Z, Lakzian A, Khalegi MR. Evaluation of osteoinduction properties of the demineralized bovine foetal growth plate powder as a new xenogenic biomaterial in rat. Res Vet Sci. 2011; 91(2): 306-10[DOI][PubMed]
  • 22. Bigham-Sadegh A, Shadkhast M, Khalegi MR. Demineralized calf foetal growth plate effects on experimental bone healing in rabbit model. Vet Arh. 2013; 83: 525-36
  • 23. Irigaray JL, Oudadesse H, El Fadl H, Sauvage T, Thomas G, Vernay AM. Effet de la temperature sur la structure cristalline d'un biocorail. Journal of Thermal Analysis. 2014; 39(1): 3-14[DOI]
  • 24. Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987; 18(2): 213-25[PubMed]
  • 25. Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am. 1994; 76(4): 540-8[PubMed]
  • 26. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007; 13: 1-10[PubMed]
  • 27. Matos MA, Araujo FP, Paixao FB. Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation. J Orthop Surg Res. 2008; 3: 4[DOI][PubMed]
  • 28. Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg. 2012; 10(2): 96-101[DOI][PubMed]
  • 29. Bigham AS, Dehghani SN, Shafiei Z, Nezhad ST. Experimental bone defect healing with xenogenic demineralized bone matrix and bovine fetal growth plate as a new xenograft: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank. 2009; 10(1): 33-41[DOI][PubMed]
  • 30. Dehghani SN, Bigham AS, Torabi Nezhad S, Shafiei Z. Effect of bovine fetal growth plate as a new xenograft in experimental bone defect healing: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank. 2008; 9(2): 91-9[DOI][PubMed]
  • 31. Anderson HC, Hodges PT, Aguilera XM, Missana L, Moylan PE. Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J Histochem Cytochem. 2000; 48(11): 1493-502[PubMed]
  • 32. Rosier RN, O'Keefe RJ, Hicks DG. The potential role of transforming growth factor beta in fracture healing. Clin Orthop Relat Res. 1998; (355 Suppl)-300[PubMed]
  • 33. Urist MR, Sato K, Brownell AG, Malinin TI, Lietze A, Huo YK, et al. Human Bone Morphogenetic Protein (hBMP). Exp Biol Med. 1983; 173(2): 194-9[DOI]
  • 34. Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci U S A. 1979; 76(4): 1828-32[PubMed]
  • 35. Oshin AO, Stewart MC. The role of bone morphogenetic proteins in articular cartilage development, homeostasis and repair. Vet Comp Orthop Traumatol. 2007; 20(3): 151-8[PubMed]
  • 36. Pouliquen JC, Noat M, Verneret C, Guillemin G, Patat J. Coral as a substitute for bone graft in posterior spine fusion in childhood. French J Orthop Surg. 1989; 3: 272-80
  • 37. Zajour W, Dehoux E, Deprey F, Segal P. Use of coral as a bone graft substitute for anterior fusion of lower spine. Orthop Prod News. 1992; : 38-9
  • 38. Roux FX, Brasnu D, Loty B, George B, Guillemin G. Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg. 1988; 69(4): 510-3[DOI][PubMed]
  • 39. Yukna RA. Clinical evaluation of coralline calcium carbonate as a bone replacement graft material in human periodontal osseous defects. J Periodontol. 1994; 65(2): 177-85[DOI][PubMed]
  • 40. Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop Scand. 1989; 60(3): 334-9[PubMed]
  • 41. Ohgushi H, Okumura M, Yoshikawa T, Inoue K, Senpuku N, Tamai S, et al. Bone formation process in porous calcium carbonate and hydroxyapatite. J Biomed Mater Res. 1992; 26(7): 885-95[DOI][PubMed]
  • 42. Vuola J, Goransson H, Bohling T, Asko-Seljavaara S. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials. 1996; 17(18): 1761-6[PubMed]
  • 43. Petite H, Kacem K, Triffitt JT. Adhesion, growth and differentiation of human bone marrow stromal cells on non-porous calcium carbonate and plastic substrata: effects of dexamethasone and 1, 25dihydroxyvitamin D3. J Mater Sci Mater in Med. 1996; 7(11): 665-71
  • 44. Alper G, Bernick S, Yazdi M, Nimni ME. Osteogenesis in bone defects in rats: the effects of hydroxyapatite and demineralized bone matrix. Am J Med Sci. 1989; 298(6): 371-6[PubMed]
  • 45. Moore DC, Chapman MW, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J Orthop Res. 1987; 5(3): 356-65[DOI][PubMed]
  • 46. Hopp SG, Dahners LE, Gilbert JA. A study of the mechanical strength of long bone defects treated with various bone autograft substitutes: an experimental investigation in the rabbit. J Orthop Res. 1989; 7(4): 579-84[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments