Trauma Monthly

Published by: Kowsar

Role of Coral, Demineralized Calf Fetal Growth Plate, and a Combination of the Two in Healing of Bone Defects in Rabbits

Amin Bigham-Sadegh 1 , * , Ahmad-Reza Mohamadnia 2 , Homayon-Reza Shahbazkia 3 and Shima Khalilifard 4
Authors Information
1 Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shahrekord University, Shahrekord, IR Iran
2 Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, IR Iran
3 Department of Basic Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, IR Iran
4 School of Veterinary Medicine, Shahrekord University, Shahrekord, IR Iran
Article information
  • Trauma Monthly: March 2017, 22 (2); e28275
  • Published Online: August 20, 2016
  • Article Type: Research Article
  • Received: February 28, 2015
  • Revised: October 3, 2015
  • Accepted: December 16, 2015
  • DOI: 10.5812/traumamon.28275

To Cite: Bigham-Sadegh A, Mohamadnia A, Shahbazkia H, Khalilifard S. Role of Coral, Demineralized Calf Fetal Growth Plate, and a Combination of the Two in Healing of Bone Defects in Rabbits, Trauma Mon. 2017 ; 22(2):e28275. doi: 10.5812/traumamon.28275.

Abstract
Copyright © 2016, Trauma Monthly. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004; 32(3): 477-86[PubMed]
  • 2. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004; 86-A(7): 1541-58[PubMed]
  • 3. Wang Y, Cui FZ, Hu K, Zhu XD, Fan DD. Bone regeneration by using scaffold based on mineralized recombinant collagen. J Biomed Mater Res B Appl Biomater. 2008; 86(1): 29-35[DOI][PubMed]
  • 4. Bigham-Sadegh A, Karimi I, Alebouye M, Shafie-Sarvestani Z, Oryan A. Evaluation of bone healing in canine tibial defects filled with cortical autograft, commercial-DBM, calf fetal DBM, omentum and omentum-calf fetal DBM. J Vet Sci. 2013; 14(3): 337-43[PubMed]
  • 5. Du C, Cui FZ, Feng QL, Zhu XD, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res. 1998; 42(4): 540-8[PubMed]
  • 6. Li J, Lin Z, Zheng Q, Guo X, Lan S, Liu S, et al. Repair of rabbit radial bone defects using true bone ceramics combined with BMP-2-related peptide and type I collagen. Mater Sci Eng, Proc Conf. 2010; 30(8): 1272-9[DOI]
  • 7. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005; 2(1): 87-101[DOI][PubMed]
  • 8. McAuliffe JA. Bone graft substitutes. Journal of Hand Therapy. 2003; 16(2): 180-7
  • 9. Wozney JM, Seeherman HJ. Protein-based tissue engineering in bone and cartilage repair. Curr Opin Biotechnol. 2004; 15(5): 392-8[DOI][PubMed]
  • 10. Bigham AS, Shadkhast M, Dehghani SN. Autogenous bone marrow concurrent with static magnetic field effects on bone-defect healing: radiological and histological study. Comp Clin Pathol. 2008; 18(2): 163-8[DOI]
  • 11. Parizi AM, Oryan A, Shafiei-Sarvestani Z, Bigham AS. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: radiological, histological, macroscopical and biomechanical evaluation. J Mater Sci Mater Med. 2012; 23(2): 473-83[DOI][PubMed]
  • 12. Oryan A, Meimandi Parizi A, Shafiei-Sarvestani Z, Bigham AS. Effects of combined hydroxyapatite and human platelet rich plasma on bone healing in rabbit model: radiological, macroscopical, hidtopathological and biomechanical evaluation. Cell Tissue Bank. 2012; 13(4): 639-51[DOI][PubMed]
  • 13. Bouchon C, Lebrun T, Rouvillain JL, Roudier M. The Caribbean Scleractinian corals used for surgical implants. Bull Inst océanogr. 1995; : 111-22
  • 14. Kavousi J, Seyfabadi J, Rezai H, Fenner D. Coral reefs and communities of Qeshm Island, the Persian Gulf. Zool Stud. 2011; 50(3): 276-83
  • 15. Ghavam Mostafavi P, Fatemi SMR, Shahhosseiny MH, Hoegh-Guldberg O, Loh WKW. Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran). Marine Bio. 2007; 153(1): 25-34[DOI]
  • 16. Guillemin G, Patat JL, Fournie J, Chetail M. The use of coral as a bone graft substitute. J Biomed Mater Res. 1987; 21(5): 557-67[DOI][PubMed]
  • 17. Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L. Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res. 1989; 23(7): 765-79[DOI][PubMed]
  • 18. Bigham-Sadegh A, Karimi I, Shadkhast M, Mahdavi MH. Hydroxyapatite and demineralized calf fetal growth plate effects on bone healing in rabbit model. J Orthop Traumatol. 2015; 16(2): 141-9[DOI][PubMed]
  • 19. Bolander ME, Balian G. The use of demineralized bone matrix in the repair of segmental defects. Augmentation with extracted matrix proteins and a comparison with autologous grafts. J Bone Joint Surg Am. 1986; 68(8): 1264-74[PubMed]
  • 20. Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res. 2015; 56(3): 175-94[DOI][PubMed]
  • 21. Bigham AS, Shadkhast M, Bigham Sadegh A, Shafiei Z, Lakzian A, Khalegi MR. Evaluation of osteoinduction properties of the demineralized bovine foetal growth plate powder as a new xenogenic biomaterial in rat. Res Vet Sci. 2011; 91(2): 306-10[DOI][PubMed]
  • 22. Bigham-Sadegh A, Shadkhast M, Khalegi MR. Demineralized calf foetal growth plate effects on experimental bone healing in rabbit model. Vet Arh. 2013; 83: 525-36
  • 23. Irigaray JL, Oudadesse H, El Fadl H, Sauvage T, Thomas G, Vernay AM. Effet de la temperature sur la structure cristalline d'un biocorail. Journal of Thermal Analysis. 2014; 39(1): 3-14[DOI]
  • 24. Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am. 1987; 18(2): 213-25[PubMed]
  • 25. Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S. The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am. 1994; 76(4): 540-8[PubMed]
  • 26. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007; 13: 1-10[PubMed]
  • 27. Matos MA, Araujo FP, Paixao FB. Histomorphometric evaluation of bone healing in rabbit fibular osteotomy model without fixation. J Orthop Surg Res. 2008; 3: 4[DOI][PubMed]
  • 28. Shafiei-Sarvestani Z, Oryan A, Bigham AS, Meimandi-Parizi A. The effect of hydroxyapatite-hPRP, and coral-hPRP on bone healing in rabbits: radiological, biomechanical, macroscopic and histopathologic evaluation. Int J Surg. 2012; 10(2): 96-101[DOI][PubMed]
  • 29. Bigham AS, Dehghani SN, Shafiei Z, Nezhad ST. Experimental bone defect healing with xenogenic demineralized bone matrix and bovine fetal growth plate as a new xenograft: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank. 2009; 10(1): 33-41[DOI][PubMed]
  • 30. Dehghani SN, Bigham AS, Torabi Nezhad S, Shafiei Z. Effect of bovine fetal growth plate as a new xenograft in experimental bone defect healing: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank. 2008; 9(2): 91-9[DOI][PubMed]
  • 31. Anderson HC, Hodges PT, Aguilera XM, Missana L, Moylan PE. Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J Histochem Cytochem. 2000; 48(11): 1493-502[PubMed]
  • 32. Rosier RN, O'Keefe RJ, Hicks DG. The potential role of transforming growth factor beta in fracture healing. Clin Orthop Relat Res. 1998; (355 Suppl)-300[PubMed]
  • 33. Urist MR, Sato K, Brownell AG, Malinin TI, Lietze A, Huo YK, et al. Human Bone Morphogenetic Protein (hBMP). Exp Biol Med. 1983; 173(2): 194-9[DOI]
  • 34. Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci U S A. 1979; 76(4): 1828-32[PubMed]
  • 35. Oshin AO, Stewart MC. The role of bone morphogenetic proteins in articular cartilage development, homeostasis and repair. Vet Comp Orthop Traumatol. 2007; 20(3): 151-8[PubMed]
  • 36. Pouliquen JC, Noat M, Verneret C, Guillemin G, Patat J. Coral as a substitute for bone graft in posterior spine fusion in childhood. French J Orthop Surg. 1989; 3: 272-80
  • 37. Zajour W, Dehoux E, Deprey F, Segal P. Use of coral as a bone graft substitute for anterior fusion of lower spine. Orthop Prod News. 1992; : 38-9
  • 38. Roux FX, Brasnu D, Loty B, George B, Guillemin G. Madreporic coral: a new bone graft substitute for cranial surgery. J Neurosurg. 1988; 69(4): 510-3[DOI][PubMed]
  • 39. Yukna RA. Clinical evaluation of coralline calcium carbonate as a bone replacement graft material in human periodontal osseous defects. J Periodontol. 1994; 65(2): 177-85[DOI][PubMed]
  • 40. Ohgushi H, Goldberg VM, Caplan AI. Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop Scand. 1989; 60(3): 334-9[PubMed]
  • 41. Ohgushi H, Okumura M, Yoshikawa T, Inoue K, Senpuku N, Tamai S, et al. Bone formation process in porous calcium carbonate and hydroxyapatite. J Biomed Mater Res. 1992; 26(7): 885-95[DOI][PubMed]
  • 42. Vuola J, Goransson H, Bohling T, Asko-Seljavaara S. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials. 1996; 17(18): 1761-6[PubMed]
  • 43. Petite H, Kacem K, Triffitt JT. Adhesion, growth and differentiation of human bone marrow stromal cells on non-porous calcium carbonate and plastic substrata: effects of dexamethasone and 1, 25dihydroxyvitamin D3. J Mater Sci Mater in Med. 1996; 7(11): 665-71
  • 44. Alper G, Bernick S, Yazdi M, Nimni ME. Osteogenesis in bone defects in rats: the effects of hydroxyapatite and demineralized bone matrix. Am J Med Sci. 1989; 298(6): 371-6[PubMed]
  • 45. Moore DC, Chapman MW, Manske D. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects. J Orthop Res. 1987; 5(3): 356-65[DOI][PubMed]
  • 46. Hopp SG, Dahners LE, Gilbert JA. A study of the mechanical strength of long bone defects treated with various bone autograft substitutes: an experimental investigation in the rabbit. J Orthop Res. 1989; 7(4): 579-84[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments